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Abstract

This paper presents a robust method for two-dimensional (2D) impulsive acoustic source localization in a room
environment using low sampling rates. The proposed method finds the time delay from the room impulse response
(RIR) which makes it robust against room reverberations. We consider the RIR as a sparse phenomenon and apply a
recently proposed sparse signal reconstruction technique called orthogonal clustering (OC) for its estimation from the
sub-sampled received signal. The arrival time of the direct path signal at a pair of microphones is identified from the
estimated RIR, and their difference yields the desired time delay estimate (TDE). Low sampling rates reduces the
hardware and computational complexity and decreases the communication between the microphones and the
centralized location. Simulation and experimental results of an actual hardware setup are presented to demonstrate
the performance of the proposed technique.
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1 Introduction
Time delay estimation (TDE)-based localization methods
are suitable for wideband source signals, and many algo-
rithms [1-5] have been proposed for TDE-based localiza-
tion. Such systems can be divided into two categories. The
first one assumes the presence of the sound source in the
far field of the microphone array. The sound wavefronts
arriving at the microphones are planar, and TDE from a
pair of microphones can be used to find the direction of
arrival (DOA) of the signal [6]. Several DOA estimates
from spatially separated microphone arrays are used to
find the source location.

Another TDE-based method called the time difference
of arrival (TDOA), assumes the presence of the sound
source in the near field of the microphones [7-10]. The
TDE from a pair of microphones is converted into range
difference from which the range difference equation is
formed. Multiple range difference measurements lead to
multiple equations which can be solved for the unknown
source position [11,12]. With an increased number of

*Correspondence: muhammad.omer@ucalgary.ca
1Electrical Engineering Department, King Fahd University of Petroleum &
Minerals, Dhahran 31261, Saudi Arabia
Full list of author information is available at the end of the article

microphones, the ambiguity in the source location can
be resolved by the least squares solution for the multiple
range difference equations.

An accurate TDE is vital for both relative angles (DOA)
and range-based (TDOA) localization schemes. The most
basic TDE methods are the cross-correlation (CC)-based
ones [2]. The CC method assumes an ideal sound prop-
agation model which makes it suitable for low-noise and
reverberant-free outdoor environments. The improved
version of the CC method is the generalized cross-
correlation (GCC) method [13]. The GCC is a family
of algorithms which applies various weight functions to
the received signal (pre-filters) in order to improve the
TDE performance in noisy environment. Despite much
improvement in GCC over the CC method, GCC method
suffers from performance degradation in dense reverber-
ant environments [14]. The performance of GCC method
under real reverberant conditions has been analyzed in
[15], and several improvements have been proposed. The
fundamental problem with CC and GCC methods is their
assumption that the microphones receive only the direct
path signal. In [16], an adaptive eigenvalue decomposi-
tion (AED) algorithm has been proposed that assumes
more realistic sound propagation models for TDE in a
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room reverberant environment. It first estimates the room
impulse response (RIR) between the source and the pair of
microphones. The TDE estimate is determined by identi-
fying the direct paths from the two RIR. The AED algo-
rithm for RIR estimation is a computationally complex
algorithm with complexity of O(N2). For AED to converge
to the true RIR, it requires continuous snapshots of the
source signal. This makes AED-based TDE unsuitable for
the sources which are impulsive in nature.

In addition, these TDE techniques suffer from a time
resolution problem at low sampling frequencies. The
effect of under-sampling on the performance of these
algorithms is discussed in [17]. The high sampling fre-
quency requirement makes the localization process not
only computationally intensive but also demands sophis-
ticated hardware. In [5], the authors provide a brief
overview, performance comparison, and problems associ-
ated with widely used TDE methods. For example, the CC
method requires the acquired data to be sent to a central
processing unit for TDE. This puts stress on the commu-
nication link as at high sampling rates, a large amount
of data has to be communicated from the sensor to the
central processing unit.

1.1 Motivation and main objectives
The drawbacks of the available TDE techniques motivated
us in this work to find a better solution for TDE. In this
work, a recently developed sparse signal reconstruction
algorithm called orthogonal clustering (OC) is applied for
the TDE problem [18]. This algorithm has already been
successfully implemented for impulsive noise estimation
and cancellation in digital subscriber lines (DSL) [19]. The
objectives of this work are as follows:

1. To tune the algorithm in [18] and apply it to enhance
the robustness of an indoor acoustic source
localization system against dense room
reverberations.

2. To work at extremely low sampling rates to relax the
computational and hardware complexity.

3. To build a hardware setup and investigate the
algorithm performance in a real reverberant
environment using actual measurements.

4. To benchmark the algorithm performance in terms
of localization accuracy and computation time
against a CC-based method.

The proposed method finds the time delays from the
estimated RIR which makes it robust against room rever-
berations. The RIR can be considered to be a sparse
phenomenon when a finite number of non-zero and tem-
porally separated impulses (corresponding to the reflected
signal components) are observed for a relatively large time
interval. This sparsity assumption is utilized to estimate

the RIR using OC algorithm [20]. The OC method recon-
structs the sparse signals from the sub-sampled data
which reduces the hardware and computational complex-
ity. The arrival time of the direct path signal at a pair of
microphones is identified from the estimated RIR, and
their difference yields the desired TDE. These estimates
are then used for the localization of the impulsive acoustic
source using TDOA.

1.2 Paper organization
This paper is organized as follows: In Section 2, the signal
model for RIR estimation is presented. A brief overview
of sparse signal reconstruction methods and their appli-
cations in different fields is given in Section 3. The details
of the OC algorithm are presented in Section 4, followed
by the description of the proposed TDE method based on
OC in Section 5. The numerical and experimental results
of the TDE-based source localization utilizing the OC
algorithm are presented in Section 6. A discussion on the
results is given in Section 7 and the concluding remarks in
Section 8.

2 Signal model for sparse signal estimation
TDE is a challenging task in reverberant environments.
The room environment between the source-microphone
pair separated by some distance can be modeled as a finite
impulse response (FIR) filter with a finite response termed
as the RIR. The channel taps of this filter represent the
multi-path components in the received signal. From the
RIR, the direct line of sight (DLOS) signal can be identi-
fied from the reflected ones. Thus, the problem of TDE
is equivalent to an accurate RIR estimation at a pair of
microphones and identification of the DLOS components
[5,21].

The signal received at the microphone due to a known
excitation signal s(t) can be described by a multi-path sig-
nal propagation model. The source signal s(t) is assumed
to be of impulsive nature with a few non-zero values for a
short time duration T. The received signal y(t) is given by

y(t) =
L−1∑
l=0

αls(t − τl) + n(t), (1)

where L is the number of paths capturing most of the
multi-path energy, αl and τl are the scaling magnitude fac-
tor and the time shift of path l, respectively, while n(t)
is the additive white Gaussian noise (AWGN). The dis-
crete time representation of the model given in (1) can be
compactly written as

y = �α + n, (2)

where y ∈ R
N and α ∈ R

N are the discrete time received
and RIR vectors, respectively, and n ∈ R

N is the AWGN
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with zero-mean and covariance matrix Cn = σ 2
n I. The N×

N matrix � is the sensing matrix whose columns consist
of N discretized and delayed versions of the source signal
s(t), i.e.,

�=

⎡
⎢⎢⎢⎢⎣

s(0 − �) s(0 − 2�) ... s(0 − N�)
s(1 − �) s(1 − 2�) ... .

. . . .

. . . .

. . . .
s((N − 1) − �) s((N − 1) − 2�) ... s((N − 1) − N�)

⎤
⎥⎥⎥⎥⎦,

(3)

where � = 1
FS

represent the time resolution with FS being
the sampling frequency. The sampling frequency FS is
assumed to satisfy the Nyquist criteria and thus � << T .
The sub-sampled received signal r is given as

r = �α + ń, (4)

where r ∈ R
M is the sub-sampled received signal and ń ∈

R
M is the AWGN of the same mean and covariance matrix

as of n. The matrix � (of size M × N) is a uniformly sub-
sampled version of the sensing matrix � where M << N
and the sub-sampling ratio1 is N

M = FS
FM

. As M << N ,
(4) is an under-determined system of equations and thus
is ill-posed.

The room impulse response α can be assumed as a
sparse signal when the length N of the impulse response
vector is much greater than the number of reflected signal
components L, i.e., N >> L. The sparsity information of
the RIR helps in its reconstruction from a small number
of measurements obtained from subsampling the received
signal using compressed sensing theory as discussed in the
next section.

3 Sparse signal estimation techniques
Sparse signal reconstruction has largely been facilitated
since the advent of compressed sensing (CS). As the name
suggests, the scheme acquires a signal at compressed sam-
pling rates by randomly projecting it onto a subspace
much smaller than the signal dimension. Most of the
naturally occurring signals are sparse in some domain,
and thus, CS techniques are able to reconstruct a sig-
nal sampled at sub-Nyquist rates. This has successfully
been implemented in peak-to-average power reduction
in orthogonal frequency domain multiplexing (OFDM),
image processing [22], impulse noise estimation and can-
cellation in power-line communication and DSL [19],
magnetic resonance imaging (MRI) [23], channel esti-
mation in communication systems [24], ultra-wideband
(UWB) channel estimation [25], DOA estimation [26],
and radar design [27].

The number of measurements M are less than the num-
ber of the unknowns N in (4) which renders the system

of equations as under-determined. This implies that an
infinite number of α’s satisfy (4). This makes the prob-
lem ill-posed, but it can be solved using the sparse nature
of α. The optimal solution in this cases is to solve an �0
minimization problem. The �0 minimization problem is
NP-hard and thus is not practical [28].

An alternate approach called convex relaxation solves
a relaxed �1 minimization problem by linear program-
ming instead of �0 minimization with a penalty on the
number of observations. Given that the sensing matrix
� obeys certain properties, �1 minimization approach
gives accurate estimates of the sparse signal [29,30]. These
methods do well in recovering the sparse signals from
under-determined system, but at the same time, they suf-
fer from a number of drawbacks. Some of these drawbacks
are listed below:

1. Convex relaxation approaches are relatively
computationally complex.

2. The structure of the sensing matrix is harmful to
these methods, e.g., the Toeplitz matrix � in (3). The
best estimation results are obtained when the
sampling is close to random.

3. They cannot make use of a priori statistical
information about the signal and additive noise.

These drawbacks motivated the work in [19,20] (pro-
posed by a sub-group of the authors) to use (1) a priori
statistical information, (2) the sparsity information, and
(3) the structure of the sensing matrix � , to develop a low-
complexity sparse signal reconstruction method which is
discussed in the next section.

4 Orthogonal clustering-based sparse signal
reconstruction method

We begin the discussion of the sparse signal reconstruc-
tion algorithm from the system model as given in (4)
where the sparse signal α is modeled as

α = αB � αG, (5)

where � denotes the Hadamard (element-by-element)
multiplication. The entries of αB are independent and
identically distributed (i.i.d.) Bernoulli random variables
with success probability p, and the entries of αG are
also i.i.d drawn from some zero-mean distribution with
marginal probability distribution function f (x). When
the supports (indices with non-zero amplitude) of α are
known, we may write (4) as

r = �SαS + n (6)

where �S is the sub-matrix formed by the columns ψ s:
s ∈ S indexed by the support S.
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4.1 Optimum estimation of α

The task is to obtain the optimum estimate of α given the
observation r. To find an optimum estimate of α, an min-
imum mean square error (MMSE) approach is pursued
that can be expressed as

α̂
MMSE =

∑
S

p(S|r)E[ α|r,S] (7)

where the sum is evaluated over all possible supports set
S of α. However, for large N, there will be 2N such sets
and it would become hard to evaluate this sum. The com-
putational complexity of the estimation can be reduced by
finding ways to approximate (7). In the following, the ways
to calculate various terms in (7) are discussed.

4.1.1 Evaluation of E[ α|r,S]
When it is known a priori that α conditioned on its
support S is non-Gaussian (as the distribution of RIR is
unknown), E[ α|r,S] is hard to find and thus we replace it
by the best linear unbiased estimate (BLUE),

E[ αS|r] = (
�S�

H
S

)−1
�H

S r. (8)

4.1.2 Evaluation of p(S|r)
The posterior probability p(S|r) can be obtained from the
prior p(S) using Bayes rule

p(S|r) = p(r|S)p(S)∑
S p (r|S) p(S)

. (9)

According to our model, the elements of x are obtained
from the Bernoulli process with success probability p, so
p(S) is given by

p(S) = p|S|(1 − p)n−|S|. (10)

The only probability that remains to be found is p(r|S).
If we consider the distribution of α|S to be unknown

arbitrary, then all we can say about r is that it is the vec-
tor in the subspace spanned by the columns of �S, plus
AWGN n. In this case, p(r|S) is given by [20]

p(r|S) ∼ exp
(

− 1
σ 2

n
||P⊥

S ||2r
)

, (11)

where

P⊥
S = I − �S

(
�H

S �S
)−1

�H
S . (12)

Evaluating the posterior probability and expectation
over all possible supports (2N such sets) requires a lot of
computations. Instead, a search space can be reduced to
2Sr points by finding the most probable supports Sr of α

using the rich structure of the problem.

4.2 Structure-based Bayesian recovery approach
The sensing matrix � in (2) has a Toeplitz structure which
is encountered in many signal processing applications of
channel estimation [24], UWB channel estimation [25],

and DOA estimation [26]. On the other hand, the uni-
formly subsampled sensing matrix � of � in (6) has block
Toeplitz structure. The OC method exploits the structure
and the impulsive nature of the source signal to estimate
the RIR vector α in a divide and conquer approach. The
columns of a sensing matrix � are not orthogonal since it
is a fat matrix (M << N). However, in the aforementioned
applications, a subset of columns can be found which are
truly orthogonal and span the column space of � . The
columns of � can be rearranged in such a way that their
correlation gets lower as the columns get farther from
each other. The columns of �S can be grouped into a max-
imum of P orthogonal clusters, i.e., �S =[ �1�2 . . . �P].
Equation (6) can be re-written as

r|S = [
�1�2 . . . �P

]
⎡
⎢⎢⎢⎣

α1
α2
...

αP

⎤
⎥⎥⎥⎦ + n. (13)

Notice that |S| follows a binomial distribution. Its mean
Np can be assumed to be small and thus we can use the
Poisson approximation of the binomial distribution, i.e.,

P(|S| = P) ≈ (Np)P

P!
exp (−Np) (14)

We select the value of P for which P(|S| = P) < ε, where ε

can be a very small number corresponding to the number
of clusters we wish to estimate. The MMSE of α in (7) can
be written as

α̂
MMSE =

⎡
⎢⎢⎢⎣

α̂1
α̂2
...

α̂P

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
E[ α1|r]
E[ α2|r]

...
E[ αP|r]

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

∑
S1 p(S1|r)E[ α1|r, S1]∑
S2 p(S2|r)E[ α2|r, S2]

...∑
SP p(SP|r)E[ αP|r, SP]

⎤
⎥⎥⎥⎦ , (15)

where Si is the support set corresponding to the ith clus-
ter. This implies that the MMSE estimate, α̂

MMSE can be
obtained in a divide and conquer manner by separately
evaluating the MMSE estimates α̂i corresponding to each
cluster.

5 Proposed TDE method based on OC
In the previous section, we presented the details of the
OC method that combines a priori statistical information,
sparsity, and structure of the sensing matrix to develop
a fast and low-complexity sparse RIR reconstruction
algorithm.

We start by finding the approximate location of dom-
inant support by correlating the received signal with the
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sensing matrix � . After finding the dominant supports,
P clusters are formed around them. This is followed by
computing the likelihood of dominant supports within a
cluster using (9) andE[ αS|r] using (8). Once we have these
two quantities, the MMSE estimate of α can be obtained
by using (15). Thus, we start with an initial guess of the
dominant support and refine it by exploring the supports
around the initial guess. In the following, we summarize
the steps involved in RIR estimation using OC algorithm:

1. Determine dominant supports. The correlation of
the received signal with the columns of the sensing
matrix � gives us the initial guess at the regions
where the dominant supports of the sparse RIR
vector, α, might be located.

2. Form semi-orthogonal clusters. The index i with the
largest correlation is selected and a cluster of size L is
formed with the i th index at the center. The length of
the cluster is selected on the basis of the correlation
between the columns of the sensing matrix � .
Following in this manner, we form P such clusters. In
a room environment considered in this work, the
number of clusters are not expected to be large and
thus we use P = 3 in this scenario. The number of
clusters can be increased for RIR estimation in an
environment with large reverberation time.

3. Determine dominant supports within clusters.
Within each cluster, the most probable supports of
size � = 1, 2, . . . Pc are found. This is done by
evaluating the likelihood of all supports of the size
� = 1, 2, . . . Pc using (9). The expected value of α

given r is evaluated using (8). Each cluster is
processed independently due to the orthogonality
between the clusters. To estimate closely spaced
reflections within a cluster, a high value of Pc is
selected.

4. Evaluate an estimate of α. The MMSE estimate of α

can be easily evaluated using (15) once the dominant
supports for each cluster, their likelihoods, and the
expected value of α given r have been computed.

5.1 OC-based TDE method requirements and
experimental procedure

It should be noted here that we are simply interested in
estimating the time of arrival and not a perfect reconstruc-
tion of the gunshot signal. Thus, the OC method does not
require the sampling frequencies FS or FM to satisfy the
Nyquist criteria. Sampling the gunshot at sub-Nyquist rate
is similar to sub-sampling the sensing matrix � which is
composed of these pulses shifted in time. In this regard,
the compressed sensing theory tells us that we can sub-
sample the signal below the Nyquist rate and still be able
to reconstruct it. So, here, we are sub-sampling the signal
at FM < FS (i.e., below Nyquist criteria) while satisfying

the condition that FM < 1
T . This is equivalent to sampling

the signal at the Nyquist rate or even higher, construct-
ing the sensing matrix � using this perfectly sampled
pulse, and then sampling rows of this matrix at a uniform
rate. In other words, the sensing matrix constructed this
way is equivalent to a sensing matrix � constructed by a
sub-sampled pulse.

In the following, we outline the experimental procedure
involved in estimating the time delays between a pair of
microphones using OC algorithm:

1. Each microphone acquires a signal at low data rates
and transmits it to the centralized workstation. The
received signal at the i th microphone is given by

ri = �αi + ńi, (16)

where ri ∈ R
M is the sub-sampled received signal at

the i th microphone, αi ∈ R
N is the impulse response

of the channel between the source and i th

microphone, and ńi ∈ R
M is the AWGN. The matrix

� (of size M × N) is a uniformly sub-sampled
version of � of the dictionary matrix where
M << N . The columns of � are delayed versions of
a signal which is obtained by averaging several
instances of the impulsive source signals of interest at
FM , collected in an outdoor environment.

2. The RIR of each microphone α̂i is estimated using
the OC algorithm [20], as shown in (15).

α̂i
MMSE = E[ αi|ri] =

∑
S

E[ αi|ri, S] p (S|ri) (17)

3. With the estimated impulse responses α̂0 and α̂1 at a
pair of microphones, the time delay estimate is
determined as the difference between the two direct
paths, i.e.,

τ̂ = arg max
l

|α̂1,l| − arg max
l

|α̂0,l| (18)

4. With the multiple TDEs obtained from multiple pair
of microphones, we apply conventional TDOA- or
DOA-based localization method [6-10] to locate the
impulsive acoustic source.

6 Results and discussion
In this section, the performance of the OC-based TDE
method is analyzed through simulations and experiments.
In the experimental part, three different configurations of
the microphones will be used to compare the performance
of the OC with CC algorithm in an indoor environment.

6.1 Impulsive acoustic source
An impulsive acoustic source considered here for simu-
lation and experimentation is a toy gun which is capable
of firing a cracker. The signal is digitally acquired in time
domain using data acquisition device at a sampling rate of
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Figure 1 Impulsive acoustic source signal generated by a toy gun shot. (a) Multiple instances of an impulsive source signal generated by a toy
gun fire. (b) Single instance of an impulsive source signal generated by a toy gun fire.

30 kHz. Figure 1a shows several instances of the gunshot
signal, while Figure 1b zooms into one of the instances to
show the signal shape.

Note that we are only concerned with FM (i.e., the sub-
sampling frequency) and not with FS. The only require-
ment for the proposed method to work is that FM < 1

T
to make sure that the gunshot is not missed completely
during sub-sampling.

6.2 TDE simulation results
The performance of the OC-based TDE method is ana-
lyzed in simulations by creating a virtual room environ-
ment. The impulse response of the channel between a
source-microphone pair placed in a room with specific
dimensions is obtained using an image-source model as
presented in [31]. Figure 2 shows the shoe box model of a
room with dimensions 8 × 6 × 3 m (x × y × z).
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Figure 2 Shoe box room model of dimensions 8 × 6 × 3 m.
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Figure 3 Typical impulsive acoustic source signal (a), room impulse response (b), and received signal at the microphone (c).

Two reverberant environments are considered with
different extent of reverberations. A dense reverberant
environment is created by setting high wall reflection
coefficients, ([ x1 = 0.75, x2 = 0.75, y1 = 0.8, y2 =
0.8, z1 = 0.85, z2 = 0.9]). For a less reverberant envi-
ronment, the reflection coefficients are set low ([ x1 =
0.2, x2 = 0.2, y1 = 0.3, y2 = 0.25, z1 = 0.3, z2 = 0.5]).
Note that these values are selected to mimic the two
extreme room environments, and any other values could

have been used. The reverberation time T60 is set to 0.25
s, where T60 is the time it takes for the signal energy to fall
below −60 dB.

The sampling frequency of the microphones is ini-
tially set to 10 kHz. Figure 3a shows a typical impulsive
source signal (a recorded toy gun shot). The room impulse
response generated using the model in [31] is shown
in Figure 3b. The signal received at the microphone is
the convolution of source signal with the RIR as shown
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Figure 4 Example of simulated RIR estimation (low reverberations).
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Figure 5 Example of simulated RIR estimation (dense reverberations).

in Figure 3c. The sparsity of the RIR is observable in
Figure 3b.

An example of the RIR estimation for a low reverber-
ant room environment is shown in Figure 4. The OC
algorithm is applied for the sparse RIR estimation with
sampling rate of 8 kHz. The direct path signal and most
of the reflected signals are correctly estimated while few
early reflections are missed. Figure 5 shows an example

of a dense reverberant environment. Here, the direct path
signal is accurately estimated as well as a number of early
and late reflections.

Figure 6 demonstrates the performance of the OC algo-
rithm for different sub-sampling rates. For simulation
purpose, the signal-to-noise ratio (SNR) is set by adding
mutually independent white Gaussian noise to the
acquired microphone signal to control the SNR. The
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Figure 7 Experimental setup for indoor TDE.

simulation is run for 500 iterations for two values of SNR,
30 and 40 dB, respectively. For each iteration, the posi-
tion of the microphones and the acoustic source were
randomly varied within the room boundaries, and RIR is
generated using the image source model in [31]. It can be
seen that for the 40-dB case, the MSE at low sub-sampling
rates is quite low and the performance degrades gradually
for higher sub-sampling rates, while there is a significant
degradation in performance for sub-sampling rate greater

than 2 in the 30-dB case. With less measurements (high
sub-sampling factor), the performance of the OC-based
RIR reconstruction degrades which eventually results in
increased MSE in TDE. Thus, the OC algorithm requires
more measurements to estimate the sparse RIR at low
values of SNR.

6.3 TDE experimental results
Figure 7 shows the actual hardware setup for TDE in a
hall room of dimensions 8 × 6 × 3 m. Two microphones
are secured with metallic stands placed 100 cm apart. The
electret microphones are mounted on low-noise ampli-
fier (LNA) PCBs with a MAX 9814 LNA IC whose gain
is set to 40 dB. The output of the LNAs are connected
to a 16-bit, 8-channel data acquisition (DAQ) device via
audio jacks and cables. The DAQ communicates with a PC
through the data acquisition tool box within MATLAB.
The DAQ device is configured using MATLAB com-
mands to acquire uniform samples of the source signal
at the sampling rates of FM = 16, 8, and 4 kHz, respec-
tively. A toy gun was used as the impulsive source with
a duration of approximately 10 ms as shown in Figure 3.
From the figure, the experimental value of the SNR is
determined by taking the ratio of the signal variance σ 2

s
(portion of the waveform that corresponds to the gun shot
signal) and the noise variance σ 2

n (portion of the waveform
that corresponds to the background noise received at the
microphone). The SNR is determined from the following
expression:

SNR = 10 log10

(
σ 2

s
σ 2

n

)
(19)

Figure 8 Experimental RIR estimate with microphone at the room center.
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Figure 9 Experimental RIR estimate with microphone close to the wall.

The average SNR value in the experiments was SNR ≈
20 dB. The dictionary matrix � in (4), required for the
RIR estimation using the OC algorithm, is constructed by
averaging several instances of the impulsive source sig-
nal at FS = 16 kHz where FS = FM (i.e., sub-sampled
frequency) as introduced before.

The first step in finding the time delay based on the
proposed OC method is to estimate the sparse RIR. To
illustrate this intermediate step of RIR estimation, we
discuss two instances of the RIR estimated for different
microphone positions inside the room. In the first case,
the microphone is placed at the room center and with
the source lying close to it. The estimated RIR shows the
direct path, early reflections along with few late reflec-
tions as shown in Figure 8. Thus, we observe that the effect
of room reverberations is quite low when microphone is
placed away from sound obstacles (room walls). Another
example of RIR estimation is conducted with the micro-
phone placed close to the room walls. The estimated RIR
contains a direct path along with a number of reflections
as shown in Figure 9. The presence of the walls close to
the microphone builds dense reverberations. This effect
is apparent in the high number of room reflections of the
estimated RIR.

The real-time functionality of the algorithm for TDE
has been verified by placing the source at known locations
around the microphones and acquiring the source signal
at various sampling rates. Table 1 shows the time delays
corresponding to three known source locations:

1. Case I: source positioned at a point on the line that
passes through the two microphones.

2. Case II: source positioned close to microphone 1, on
the vertex of an isosceles triangle formed by the
microphones and the source.

3. Case III: source positioned in the middle of the line
joining the two microphones.

The corresponding estimated time delays using CC and
the proposed algorithm for three sampling rate values of
FM = 16, 8, and 4 kHz are shown in Table 1. The sampling
rates are selected by setting the data acquisition hardware
to the desired rate. It can be seen that the proposed algo-
rithm gives closer time delay estimates when compared to
CC in the case of low sampling rates. This demonstrates
the superior performance of the OC-based technique used

Table 1 Comparison of time delay estimates obtained
using CC and the proposed technique based on OC
algorithm

Frequency True TD TDE CC Run time TDE OC Run time
(kHz) (ms) (ms) CC (s) (ms) OC (s)

Case I 16 2.941 2.875 66 2.875 70

8 2.941 3.125 17 2.875 7

4 2.941 2.250 4.5 3.312 3.5

Case II 16 1.218 1.250 66 1.250 70

8 1.218 0.875 17 1.312 7

4 1.218 1.000 4.5 1.250 3.5

Case III 16 0.000 0.000 66 0.000 70

8 0.000 0.250 17 0.000 7

4 0.000 0.750 4.5 0.187 3.5
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Figure 10 Microphone configuration I for source localization. (a) Configuration geometry. (b) Experimental setup.

in [19] when tuned to work for this application. In addi-
tion, the run time needed to provide TDE of the proposed
algorithm are faster than CC at low sampling rates, which
gives it a computational advantage as well.

6.4 Source localization results
In this sub-section, we present the results of time delay-
based localization experiment. The inherent limitations
of DOA-based localization method specifically for indoor
environment and under low sampling rate are initially dis-
cussed. We apply the TDOA method for localization as it
suits our application. Results of several localization exper-
iments for three different microphones geometries are
presented.

6.4.1 DOA-based source localization
The TDE is an integer multiple of the sampling period
Ts in the absence of an interpolation technique. The

estimated delays suffer from poor time resolution at low
sampling frequencies (large sampling period) [5]. Such
low time resolution is not suitable for DOA-based local-
ization scheme where the spatial resolution between the
microphones (inter-microphone spacing) is also low. Con-
sider a setup for DOA estimation consisting of an array
of two microphones separated by a small distance d and
a source that lies in the far field of the array. The bear-
ing angle θ is related to the time delay, which for 1D
microphone array is expressed as [6]

θ = cos−1
(cτ

d

)
(20)

where c is the sound propagation velocity.
The angular resolution of an array determines the num-

ber of different DOA measurements between 0 and π . It
directly corresponds to the sampling frequency Fs (sam-
pling time Ts). For instance, a microphone array, with
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Figure 11 Microphone configuration I localization results for source at (−100, 100).
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a 30-cm inter-microphone spacing, can provide only 14
distinct DOA measurements at the sampling frequency
Fs = 16 kHz, 7 measurements at Fs = 8 kHz and 4 mea-
surements at Fs = 4 kHz between 0 and π , respectively.

Increasing the sampling rate improves the TDE reso-
lution which in turn lead to a higher DOA resolution
[5]. However, this approach will increase the complex-
ity of both the TDE algorithm and hardware. Other ways
to improve the DOA resolution is by increasing micro-
phone spacing dN which will increase the size of the
array. Also, the far field requirement for DOA estimation
makes it hard to implement in a room environment with
a limited space. Moreover, large microphone spacing may

cause spatial aliasing. It may also lead to higher computa-
tional complexity since more data has to be acquired for
extended time durations to account for the larger delay
range.

6.4.2 TDOA-based source localization
Time difference of arrival (TDOA) is another widely used
TDE-based source localization method. The method is a
two-step procedure. In the first stage, the time difference
of signal arrival between a pair of microphones is esti-
mated. With the knowledge of the propagation velocity of
sound, the estimated TDOA measurement is transformed
into range difference measurement from which hyperbolic

Table 2 Microphone configuration I results for the source location of (−100, 100)

Fs True time Estimated tau Estimated source Run time Estimated tau Estimated source Run time
delay CC location CC CC OC location OC OC

(kHz) (ms) (ms) (cm) (s) (ms) (cm) (s)

4.250 3.125

1.250 L.F. −0.625 L.F.

1.250 −0.625

2.125 2.375

−1.250 (−39.3, 78.1) −0.937 (−61.8, 76.2)

−2.250 −0.375

2.417 4.500 2.375

8 −1.218 −1.125 L.F. 17 −1.250 (−88.1, 96.5) 7

−1.218 −1.0000 −1.000

4.250 2.312

−1.000 L.F. −1.375 (−82.6, 99.5)

−7.250 −0.812

2.125 2.062

−1.500 (−49.7, 89.0) −1.562 (−43.4, 88.0)

−0.250 0.187

1.250 2.250

−2.750 (−0.1, 96.7) −1.500 (−77.9, 102.7)

−2.500 −0.687

2.500 3.650

−1.500 L.F. −1.562 L.F.

−2.000 −0.500

2.417 −0.750 2.125

4 −1.218 −1.750 (83.3, 118.8) 4.5 −1.250 (−39.2, 78.1) 3.5

−1.218 −1.250 0.312

3.650 2.562

−0.750 L.F. −0.687 (−89.0, 74.3)

−1.250 −1.187

2.250 2.500

−0.500 (−30.2, 60.0) −0.812 (−80.3, 76.8)

−0.500 −0.937

L.F., localization failure.
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range difference equation is formed. The second stage
utilizes efficient algorithms to produce an unambiguous
solution to the hyperbolic equations obtained from
multiple microphone pairs. The solution produced
by these algorithms result in the estimated source
location.

The drawbacks of DOA method for indoor localiza-
tion made us focus on using the TDOA-based localization
method. The TDOA-based method does not make the
far field assumption (i.e., plane waves arriving at micro-
phones). Moreover, the microphones can be separated by
large distances that provides higher spatial resolution for
TDE at low sampling frequencies. In the following, we
consider three different microphone geometries. For each
geometry, we apply the CC and OC algorithms for TDE
and apply the TDOA method for two-dimensional (2D)
source localization.

6.4.3 Microphone configuration I
The microphone configuration shown in Figure 10a con-
sists of a 2D microphone array placed in the xy plane.
Microphone M1 placed at the center of the array is taken
as a reference of the array. The location of the reference
microphone M1 defines the origin (intersection of x and
y axis) of the 2D plane. Other microphones M2, M3, and
M4 are placed at an equidistant spacing of d = 100
cm from the reference shown in Figure 10. The TDOA-
based localization in 2D plane requires a minimum of two
time delay estimates obtained from three microphones
where the two TDEs corresponds to the two microphone
pairs M1, M2 and M1, M3, respectively. However, adding
an extra microphone M4 gives a redundant time delay
measurement which can be used to improve the location
estimate.

The experimental setup for microphone configuration I
is shown in Figure 10b. The setup is made on a 4 × 4 m

floor mat placed in the room center. The floor mat has a
printed grid of 20 × 20 cm which helps in microphones
and source placement. The acoustic sensors are secured
on top of metallic stands. The height of the stands form
a 2D plane in which the acoustic source lies (a person fir-
ing a gun). Outputs of the pre-amplifiers are connected
via audio leads and jacks to four different channels on a
USB data acquisition device. MATLAB is used for data
acquisition and further signal processing for the source
localization algorithm.

The CC- and OC-based methods of TDE have been
applied on the data acquired for different source locations.
In order to assess the consistency of both algorithms, five
instances of the source signal are acquired at each source
location at sampling rates of 4 and 8 kHz, respectively.
TDOA-based source localization is used to determine the
source location based on the estimated time delays.

The estimated locations using the proposed OC method
(with sub-sampling), for the source positioned at vari-
ous locations in the vicinity of the acoustic sensors, were
recorded for five different source locations. Figure 11
shows one of the positions where the source was at
(−100, 100) cm. The figure shows the position of the
microphones (filled squares), source location (hollow cir-
cles), and the estimated source locations (stars for 8 kHz
and diamond for 4 kHz). The plot area represents the
region of the floor mat. It can be observed that the source
locations for the 8-kHz measurements lie in close prox-
imity to the true location. The location estimates for
the 4-kHz measurements are observed to be lying rel-
atively farther from the true source location than with
the 8-kHz measurements. This shows the trade off that
exists between the accuracy of location estimates and the
sub-sampling rates as shown earlier in Figure 6.

The experimental results of the CC- and OC-based
time delay and source location estimates for microphone

Figure 12 Localization failures in CC and OC for microphone configuration I.
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Figure 13 Microphone configuration II for source localization. (a) Configuration geometry. (b) Experimental setup.

configuration I with source location (−100, 100) cm are
also tabulated in Table 2. The table provides the results of
the estimated time delays, source location, and computa-
tion time of both TDE techniques for this specific source
location sampled at two different sampling rates. Five dif-
ferent locations were examined for this geometry. Tables
similar to Table 2 were generated for each case. From the
results of this configuration, we conclude that
• The benefit of the proposed method becomes obvious

when the source signal is sub-sampled. With the 8-kHz
measurements, the proposed OC-based TDE method
gives better and more consistent location estimates as
compared to the CC which fails (location failure (LF))
several number of times to locate the source in an

acceptable region (4 × 4 m). Figure 12 shows that CC
fails2 more than 50% of the times, while the failure rate
of OC is less than 30%. The OC algorithm computes
TDE in 7 s which is much less than 17 s taken by CC.

• Sampling the source signal at even lower rate of 4 kHz
deteriorates the performance of the CC method to a
much larger extent, resulting in an increased percentage
of localization failures up to 85%. In contrast, OC gives
acceptable location estimates in many cases with rela-
tively less percentage, 40% of localization failures. The
computation time of OC is 3.5 s which is less than 4.5 s
taken by CC.
The acoustic source used is not an ideal point source,

but in fact, it is a person exciting an acoustic source
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while standing at the true location. Hence, we expect the
location estimates to lie within an area around the source
(±25 cm).

6.4.4 Microphone configuration II
Another microphone configuration examined for the
source localization experiments is shown in Figure 13. It
consists of a 2D microphone array placed in an xy plane.
Microphone M1 is taken as an array reference and is
placed at the origin. Microphones M2 and M3 are placed
at an equidistant spacing of d = 100 cm from the refe-
rence along the horizontal and vertical axis, respectively.
Microphone M4 is placed 200 cm apart from the reference

along the y axis. The fourth microphone M4 provides an
extra time delay measurements which in turn improves
the location estimates. This array was placed at the room
corner to obtain more reverberations.

The proposed OC-based method and the CC method
were applied on the acquired data for three different
source locations. For each source location, the signal
was acquired at sampling rates of 4 and 8 kHz, respec-
tively. The location estimates for the source positioned at
(100, 200) cm are shown in Figure 14.

From the figure, we observe that with the sampling rate
of 8 kHz, a high percentage of estimated source locations
are in close proximity with the true location. Decreasing

Table 3 Microphone configuration II results for the source location of (100, 200)

Fs True time Estimated tau Estimated source Run time Estimated tau Estimated source Run time
delay CC location CC CC OC location OC OC

(kHz) (ms) (ms) (cm) (s) (ms) (cm) (s)

1.500 −0.750

−5.125 (−10.2, 157.3) −2.375 (105.1, 197.6)

−3.375 −3.500

−1.625 −0.687

−3.375 L.F. −2.562 (112.1, 253.6)

−7.000 −3.625

−0.6493 −3.375 0.562

8 −2.4172 −4.375 L.F. 17 −2.750 (125.4, 383.9) 7

−3.6355 −3.875 −3.562

−3.625 −0.812

−2.875 L.F. −2.375 (110.8, 205.1)

−4.125 −3.562

−0.250 −0.750

−2.000 L.F −2.375 (103.6, 197.4)

−7.750 −3.500

−0.750 −0.750

2.000 L.F −2.375 (102.8, 193.2)

−8.250 −3.375

−3.250 −1.250

−3.750 L.F. −1.812 (124.5, 152.2)

−4.000 −1.875

−0.6493 2.7500 −0.687

4 −2.4172 −2.500 (−118.8, 163.3) 4.5 −2.375 (100.0, 195.6) 3.5

−3.6355 −2.250 −3.500

−0.750 −0.750

4.000 L.F. −2.312 (102.6, 184.1)

−4.500 −3.125

1.750 −0.812

−4.750 (−27.5, 202.1) −1.937 (91.6, 136.7)

−5.250 −1.562

L.F., localization failure.
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the sampling frequency to 4 kHz, the algorithm finds close
location estimates in many cases, while in others, the esti-
mates lie a bit far from the true location. Tabulated results
are shown in Table 3. We make the following observations
from the results obtained:
• The close to wall microphone configuration results in

an increased level of room reverberations. At 8 kHz, the
proposed OC-based method is observed to be working
effectively under dense room reverberation conditions.
Comparing this case with the center room configura-
tion, the localization failure has significantly decreased
from 30% to 12%. In contrast, the CC method suf-
fers both from the increased level of reverberations
and higher under-sampling factors. These reverbera-
tions result in an increased rate of localization failures
from 50% (center room configuration) to 60%. A com-
parison of localization failures of both CC and OC
with respect to the sampling frequencies is shown in
Figure 15. Moreover, the execution time of OC method
is 7 s which is much faster than 17 s consumed by CC.

• At 4 kHz, the OC method performs consistently well
under high sub-sampling rate with a low percentage
20% of localization failures as compared to 40% for
center room configuration. On the other hand, the per-
formance of the CC method deteriorates further at such
low sampling rate. A high percentage of localization
failures of more than 75% are observed with CC. The
computation time of OC is 3.5 s, faster than 4.5 s of CC.

6.4.5 Microphone configuration III
Figure 16 shows the third microphone configuration for
the source localization experiments. It represents a 2D
microphone array placed in an xy plane. Microphone M1
is taken as an array reference and is placed at the origin.
Microphones M2 and M3 are placed at an equidistant
spacing of d = 100 cm from the reference along the

horizontal and vertical axis respectively. Microphone M4
is placed 100 cm apart from the reference in both x and y
axes. The fourth microphone M4 provides an extra time
delay measurements which in turn improves the location
estimates. This geometry was also built next to the wall to
increase reverberations.

The estimated locations for the source position at
location (200, 100) cm are shown in Figure 17. Table 4
shows all the experimental results conducted for micro-
phone configuration III. From the results, we observe the
following:

• At 8 kHz, the OC method works better under
increased level of reverberations as less localization
failure rate of 10% is observed as compared to 30%
for center room configuration. Once again, we
observe performance degradation of CC method with
high failure rate of CC of 60% caused by increased
reverberations and high under sampling factor.
Figure 15 shows the comparison between the
localization failures of OC and CC under different
sampling rates. The execution time of OC method is
7 sec which is much less than 17 s consumed by CC.

• At 4 kHz, the OC method performs effectively under
dense reverberations. Comparing with center room
configuration, less localization failure rate of 20% is
achieved. In contrast, CC fails to locate the source
70% of the times due to high sub-sampling rate and
increased reverberations. Figure 18 shows the rate of
localization failure for both OC and CC methods
under different sub-sampling rates. The computation
time of OC is 3.5 s, faster than 4.5 s of CC.

7 Discussion
The time delays for an indoor environment are extremely
small (few milliseconds), where the source and the

Figure 15 Localization failures in CC and OC for microphone configuration II.
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Figure 16 Microphone configuration III for source localization. (a) Configuration geometry. (b) Experimental setup.

microphones lie close to each other. In this case, accu-
rate TDE requires high time resolution (low sampling
time). The proposed method reconstructs a sparse RIR
signal using signal statistics, sparsity information, and the
problem structure. Although decreasing the number of
measurements (sampling rate) makes the RIR estimation
less accurate, this does not decrease the time resolution.
In contrast, CC-based TDE method depends largely on
the sampling rate. At low sampling rates, the time reso-
lution (large sampling time) becomes poor which makes
it hard to find the correlation peak close to the true time
delay.

The proposed method estimates the time delays from
the RIR. The accuracy of TDE depends largely on
estimating the impulse which corresponds to the direct
path signal. Since RIR is estimated from under-sampled
signal, there is a possibility to miss the impulse corre-
sponding to the true time delay. The TDE in such case will
rely on estimating the closest reflection. Thus, increased
level of reverberations in the close wall configuration
favored the proposed TDE method as it suffered from
low localization failures as compared to the center room
configuration. On the other hand, reverberations have an
adverse effect on CC method. The reflected signals cause
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Figure 17 Microphone configuration III localization results for source at (200, 100).
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Table 4 Microphone configuration III results for the source location of (200, 100)

Fs True time Estimated tau Estimated source Run time Estimated tau Estimated source Run time
delay CC location CC CC OC location OC OC

(kHz) (ms) (ms) (cm) (s) (ms) (cm) (s)

−5.500 −3.437

−2.625 L.F. −3.250 (193.3, 98.3)

0 −0.125

−5.500 −3.562

−2.000 L.F. −3.625 (199.8, 103.8)

−3.250 −0.125

−3.635 −5.500 −3.500

8 −3.635 −3.375 L.F. 17 −3.750 (190.8, 93.8) 7

0 7.375 0.250

−5.500 3.500

−3.125 (298.3, 67.4) −3.000 (195.5, 96.7)

0.625 0.187

−6.875 −3.500

−3.375 (310.3, 15.4) −3.562 (194.5, 98.7)

2.000 0

−5.750 −3.625

−3.500 L.F. −3.625 (193.4, 90.4)

−4.250 0.312

−5.500 −3.625

−3.750 L.F. −3.500 (200.3, 100.1)

0.500 −0.062

−3.635 −5.500 −3.500

4 −3.635 −4.000 L.F. 4.5 −4.000 (208.5, 123.7) 3.5

0 −5.750 −0.562

−3.250 −3.312

−7.000 L.F. −3.562 (189.1, 100.4)

−2.250 −0.062

−3.000 −3.250

−4.250 L.F. −3.312 (188.2, 100.9)

−3.750 −0.187

L.F., localization failure.

multiple peaks to appear in the correlation resulting in
performance degradation.

Increase in the sampling rate improved the perfor-
mance of OC-based TDE method, as more measure-
ments favored the sparse RIR signal reconstruction. Thus,
OC-based localization method performed better at the
sampling rate of 8 kHz (localization failure ≤ 30%) as
compared to 4 kHz (localization failure ≤ 40%).

Placing the microphones close to the wall improved
the performance of the proposed OC-based method.
Among the three microphone configurations that we
experimented, the least localization failures (≤ 20%) were
experienced with the microphone configuration II. Simi-
lar failure rate was observed in microphone configuration

III, while the center room configuration resulted in a large
rate of localization failure (≤ 40%).

8 Conclusions
This paper presents a novel approach for time delay
estimation (TDE) for indoor impulsive source localiza-
tion. The existing methods of TDE-like cross-correlation
(CC) and generalized cross-correlation (GCC) suffer from
performance degradation under dense reverberant envi-
ronments, while the adaptive eigenvalue decomposition
(AED) method for reverberant environments requires
high computations due to adaptive estimation of the
room impulse response (RIR). In addition, the high sam-
pling rate requirement of the existing techniques makes
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Figure 18 Localization failures in CC and OC for microphone configuration III.

the localization process computationally intensive and
imposes the need for sophisticated hardware. Moreover,
the need of centralized processing in CC-based methods
puts strain on the communication link between sensors
and the processing unit. This motivated us to develop
a more robust TDE method, based on the RIR estima-
tion to enhance the robustness of indoor acoustic source
localization. In addition, the proposed method works
at extremely low sampling rates and hence decreases
the computation time and hardware complexity. More-
over, the distributed nature of the proposed algorithm
enables it to perform localization at the sensor level
which eliminates the need for centralized processing. The
performance of the proposed method for TDE and local-
ization is analyzed by both simulations and experimen-
tal setup. The results show the improved performance
of the proposed method over the existing CC method.
Several microphone configurations are considered for
source localization experiments. Through experimen-
tal evidences and theoretical understanding, it is found
that the close wall configuration favored the proposed
method.

Endnotes
1Note that it is necessary for the sub-sampling ratio to

be less than T to avoid missing the source signal
completely, i.e., FM should be less than 1

T . Ideally
speaking, the gunshot will have frequency ≥ 20 kHz
being an acoustic signal of impulsive nature.

2Localization failure is the ratio of the number of times
the algorithm fails to locate the source in an acceptable
region to the total number of measurements conducted
at a specific Fs.
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